-
For the equation dy + 7x2y = 0 , if y(0) = 3 / 7 , dx
then the value of y(1) is
-
-
3 e-7 / 3 7
-
3 e-3 / 7 7
-
7 e-3 / 7 3
-
7 e-7 / 3 3
-
Correct Option: A
From question, we have
| + 7x2y = 0 , y(0) = | , y(1) = ? | |||
| dx | 7 |
| = -7x2y | ||
| dx |
| = -7x2dx | ||
| y |
| ln y = - | + C | |
| 3 |
y = e{ (-7x3 / 3) + C}
| y(0) = eC = | ||
| 7 |
| C = ln | ![]() | ![]() | |
| 7 |
| ln y = - | + ln | ![]() | ![]() | |||
| 3 | 7 |
| ln y - ln | ![]() | ![]() | = - | |||
| 7 | 3 |
| ln | ![]() | ![]() | = - | |||
| 3 | 3 |
| y = | e (-7x3/ 3) | |
| 7 |
| ∴ y(1) = | e (-7/ 3) | |
| 7 |

