-
For the situation shown in the figure below the expression for H in terms of r, R and D is
-
- H = D + √r² + R²
- H = ( R + r ) + ( D + r )
- H = ( R + r ) + √D² + R²
- H = ( R + r ) + √2D( R + r ) - D²
- H = D + √r² + R²
Correct Option: D
AB = √(R + r)² - (D - R - r)²
H = R + AB + r
H = R + r + √(R + r + D - R - r) - (R + r - D + R + r)
H = R + r + √D[2(R + r) - D]
H = R + r + √[2D(R + r) - D²]