-
u = U 1 + ekx 1 - ekL
which passes through the origin and the pointIn 2, 3 4
-
-
y = x ex - e-x L -
y = x (ex + e-x) L -
y = x (ex - e-x) L -
y = x ex + e-x L
-
Correct Option: C
= y ⇒ (D² - 1)y = 0 | ||
dx² |
D² – 1 = 0
⇒ D = ± 1
y = c1 ex + c2 e–x
Passes through (0, 0) and | 142, | (0,0) | |||
4 |
⇒ 0 = C1 + C2 ...(1)
142, | (0,0) | ||||
4 |
= C1 + C2e-142 = C1 2 + | |||
4 | 2 |
⇒ 2C1 + | C2 = | ||
2 | 4 |
solving (1) and (2)
⇒ C1 = 1/2
C2 = – 1/2
∴ y = | ex - | e-x = | (ex - e-x) | |||
2 | 2 | 2 |