-
If bc + ab + ca = abc, then the value of b + c + a + c + a + b is bc(a − 1) ac(b − 1) ab(c − 1)
-
- 0
-
− 1 2 -
− 3 2 - 1
Correct Option: D
Given, bc + ab + ca = abc
∴ bc + ab = abc – ac
ab + ca = abc – bc
bc + ca = abc – ab
| ∴ Expression = | + | + | |||
| abc − bc | abc − ac | abc − ab |
| = | + | + | |||
| ab + ac | bc + ab | bc + ca |
| = | + | + | |||
| a(b + c) | b(c + a) | c(a + b) |
| = | + | + | |||
| a | b | c |
| = | |
| abc |
| = | = 1 | |
| abc |