Home » Aptitude » Trigonometry » Question
  1. The angle of elevation of the top of a tower from two points A and B lying on the horizontal through the foot of the tower are respectively 15° and 30°. If A and B are on the same side of the tower and AB = 48 metre, then the height of the tower is :
    1. 24 √3 metre
    2. 24 metre
    3. 24 √3 metre
    4. 96 metre
Correct Option: B


Tower = PQ = h metre
QB = x metre
From ∆ APQ,

tan15° =
h
x + 48

2 – √3 =
h
....(i)
x + 48

[∵ tan 15° = tan (45° – 30°)
= = 1 -
1
tan 45° - tan 30°3
1 + tan 45°tan 30°1 +
1
3

or
3 - 1
×
3 - 1
3 + 13 - 1

=
4 - 2√3
= 2 - √3 ]
2

From ∆PQB,
tan30° =
h
x

1
=
h
3x

⇒ √3h = x .............(ii)
⇒ 2 - √3 =
h
3h + 48

⇒ 2√3h - 3h + (2 - √3) 48 = h
⇒ h + 3h - 2√3h
=(2 - √3) × 48
⇒ 2h(2 - √3) = 48 × ( 2 - √3)
⇒ h =
48
= 24 metre
2



Your comments will be displayed only after manual approval.