-
If sin(x + y) = a + b , then the value of tan x is equal to sin(x - y) a - b tan y
-
-
2a b -
a b -
a 2b -
2a 3b
-
Correct Option: B
Here,
| = | ||||
| sin(x - y) | a - b |
Using componendo and dividendo both sides we get,
| sin(x + y) - sin(x - y) |
| = | ||
| a + b - (a - b) |
| = | 2sin | ![]() | ![]() | cos | ![]() | ![]() | ||
| 2 | 2 | |||||||
| 2sin | ![]() | ![]() | cos | ![]() | ![]() | |||
| 2 | 2 | |||||||
| = | ||
| 2a |
∵ sinC + sinD
| = 2sin | ![]() | ![]() | cos | ![]() | ![]() | sinC - sinD | ||
| 2 | 2 |
| = 2cos | ![]() | ![]() | sin | ![]() | ![]() | ||
| 2 | 2 |
| ⇒ | = | ||
| siny.cosx | b |
| ⇒ | = | ||
| tan y | b |

