Home » Aptitude » Trigonometry » Question
  1. The angles of depression of two ships from the top of a light house are 60° and 45° towards east. If the ships are 300 metre apart, the height of the light house is
    1. 200 (3 + √3) metre
    2. 250 (3 + √3) metre
    3. 150 (3 + √3) metre
    4. 160 (3 + √3) metre
Correct Option: C


AB = Lamp post = h metre C and D = Positions of ships CD = 300 metre; BC = x metre ∆ACB = 60 metre; ∠ADB = 45°
In ∆ABC,

tan 60° =
AB
BC

⇒ √3 =
h
x

⇒ h = √3x ..... (i)
In ∆ABD,
tan 45° =
AB
BD

⇒ 1 =
h
x + 300

⇒ h = x + 300
⇒ h =
h
+ 300
3

⇒ h -
h
= 300
3

⇒ h -
3h - h
= 300
3

⇒ h (√3 - 1) = 300√3
⇒ h =
300(√3)
3 - 1

=
300√3(√3 + 1)
(√3 - 1)(√3 + 1)

=
300(3 + √3)
2

= 150(3 + √3) metre
= 45 kmph.



Your comments will be displayed only after manual approval.