-
If sec θ + tan θ = 2 + √5 , then the value of sin θ + cos θ is :
-
-
3 √5
- √5
-
7 √5 -
1 √5
-
Correct Option: A
sec θ + tan θ = 2 + √3
∴ sin θ - tan θ = | √5 + 2 |
[∵ sec² θ - tan² θ = 1]
= | = √5 - 2 | (√5 + 2)(√5 - 2) |
On adding,
2secθ = 2 + √5 + √5 - 2 = 2√5
⇒ secθ = √5 ⇒ cosθ = | √5 |
On subtracting,
2tanθ= 2 + √5 - √5 + 2 = 4
⇒ tan θ = 2
∴ | = sin θ | sec θ | √5 |
∴ sin θ + cos θ | + | √5 | √5 |
= | √5 |