-
If x cos θ – y sin θ = √x² + y² cos²θ + sin²θ = 1 , then the correct relation is a² b² x² + y²
-
-
x² - y² = 1 b² a² -
x² + y² = 1 a² b² -
x² + y² = 1 b² a² -
x² - y² = 1 a² b²
-
Correct Option: B
According to question,
x cosθ – y sinθ = √x² + y²...(i)
+ | = | ...(ii) | ||||
a² | b² | x² + y² |
sinθ = | ||
√x² + y² |
cosθ = | ||
√x² + y² |
From equation (i)
cosθ - | sinθ = 1 | |||
√x² + y² | √x² + y² |
∴ | + | = | |||
a² | b² | x² + y² |
⇒ | + | = | |||
(x² + y²)a² | (x² + y²)b² | x² + y² |
⇒ | + | = 1 | ||
a² | b² |