Home » Aptitude » Trigonometry » Question
  1. The maximum value of sin2θ + cos2θ is
    1. 1
      3
    2. 1
    3. 2
    4. 3
Correct Option: B

Expression
= sin4θ + cos4θ
= (sin²θ)² + (cos²θ)²
= (sin²θ + cos²θ)² – 2 sin²θ.cos²θ.
= 1 – 2 sin²θ. cos²θ.

= 1 -
4sin²θ . cos²θ
2

[∵ sin²θ = 2 sinθ . cosθ]
= 1 -
sin²2θ
2

= 1 -
1 - cos4θ
4

[∵ 1 – cos²θ = 2cos²θ]
= 1 -
1
+
cos4θ
44

= 1 -
1
+
1
= 1
44

(cos 4θ ≤1)
OR
The value of sin4 θ + cos4 θ will be
maximum if θ = 0°
∴ Required value = (sin0)4 + (cos0)4 = 0 + 1 = 1



Your comments will be displayed only after manual approval.