-
The maximum value of sin2θ + cos2θ is
-
-
1 3 - 1
- 2
- 3
-
Correct Option: B
Expression
= sin4θ + cos4θ
= (sin²θ)² + (cos²θ)²
= (sin²θ + cos²θ)² – 2 sin²θ.cos²θ.
= 1 – 2 sin²θ. cos²θ.
= 1 - | 2 |
[∵ sin²θ = 2 sinθ . cosθ]
= 1 - | 2 |
= 1 - | 4 |
[∵ 1 – cos²θ = 2cos²θ]
= 1 - | + | 4 | 4 |
= 1 - | + | = 1 | 4 | 4 |
(cos 4θ ≤1)
OR
The value of sin4 θ + cos4 θ will be
maximum if θ = 0°
∴ Required value = (sin0)4 + (cos0)4 = 0 + 1 = 1