-
If secθ + tanθ = p, (p ≠ 0) then secθ is equal to
-
-
p - 1 , p ≠ 0 p -
2 p - 1 , p ≠ 0 p -
p + 1 , p ≠ 0 p -
(1 / 2) p + 1 , p ≠ 0 p
-
Correct Option: D
secθ + tanθ = p .....(i)
∵ sec²θ – tan²θ = 1
⇒ (secθ + tanθ) (secθ – tanθ) = 1
⇒ secθ – tanθ = | ....(ii) | p |
On adding both the equations
2 secθ = p + | p |
⇒ secθ = | | p + | 1 | ||
2 | p |