-
The angles of elevation of an aeroplane flying vertically above the ground, as observed from the two consecutive stones, 1 km apart; are 45° and 60° aeroplane from the ground is :
-
- (√3 + 1) km.
- (√3 + 3) km.
-
1 (√3 + 1) km. 2 -
1 (√3 + 3) km. 2
Correct Option: D

Two consecutive kilometre stones ⇒ C and D
∠ADB = 45°; ∠ACB = 60°
CD = 1 km.
AB = height of plane = h metre
BC = x metre (let)
In ∆ABC,
| tan60° = | ||
| BC |
| ⇒ √3 = | ||
| x |
⇒ h = √3x metre ..... (i)
In ∆ABD
| tan45° = | ||
| BD |
| ⇒ 1 = | ||
| x + 1 |
⇒ h = x + 1
| ⇒ h = | + 1 | |
| √3 |
[From equation (i)]
| ⇒ h - | = 1 | |
| √3 |
| ⇒ | = 1 | |
| √3 |
⇒ (√3 - 1)h = √3
| ⇒ h = | ||
| √3 - 1 |
| ⇒ h = | ||
| (√3 - 1)(√3 + 1) |
| ⇒ h = | ||
| 2 |
| h = | metre | |
| 2 |