-
The angles of elevation of an aeroplane flying vertically above the ground, as observed from the two consecutive stones, 1 km apart; are 45° and 60° aeroplane from the ground is :
-
- (√3 + 1) km.
- (√3 + 3) km.
-
1 (√3 + 1) km. 2 -
1 (√3 + 3) km. 2
Correct Option: D
Two consecutive kilometre stones ⇒ C and D
∠ADB = 45°; ∠ACB = 60°
CD = 1 km.
AB = height of plane = h metre
BC = x metre (let)
In ∆ABC,
tan60° = | ||
BC |
⇒ √3 = | ||
x |
⇒ h = √3x metre ..... (i)
In ∆ABD
tan45° = | ||
BD |
⇒ 1 = | ||
x + 1 |
⇒ h = x + 1
⇒ h = | + 1 | |
√3 |
[From equation (i)]
⇒ h - | = 1 | |
√3 |
⇒ | = 1 | |
√3 |
⇒ (√3 - 1)h = √3
⇒ h = | ||
√3 - 1 |
⇒ h = | ||
(√3 - 1)(√3 + 1) |
⇒ h = | ||
2 |
h = | metre | |
2 |