-
In a Δ ABC, the sides AB and AC are produced to P and Q respectively. The bisectors of ∠ OBC and ∠ QCB intersect at a point O. Then ∠ BOC is equal to:
-
-
90 ° + 1 ∠A 2 -
90 ° - 1 ∠A 2 -
120° + 1 ∠A 2 -
120° - 1 ∠A 2 - None of these
-
Correct Option: B
From given figure , We have ∠B + ∠CBP = 180° (Linear pair)
| ⇒ | 1 | ∠B + ∠CBP = 90° |
| 2 |
| ⇒ | 1 | ∠B + ∠1 = 90° |
| 2 |
| ⇒ ∠1 = 90° - | 1 | ∠B ............ ( 1 ) |
| 2 |
| Similarly ∠2 = 90° - | 1 | ∠C |
| 2 |
In ΔOBC, we have ∠1 + ∠2 + ∠BOC = 180° (Angle sum prop.)
| ⇒ | ![]() | 90° - | 1 | ∠B | ![]() | + | ![]() | 90° - | 1 | ∠C | ![]() | + ∠BOC = 180° |
| 2 | 2 |
| ⇒ ∠BOC = | 1 | (∠B + ∠C) |
| 2 |
| ∠BOC = | 1 | (∠A + ∠B + ∠C) - | 1 | ∠A |
| 2 | 2 |
| ∠BOC = | 1 | ×180° - | 1 | ∠A { ∴ ∠A + ∠B + ∠C = 180° } |
| 2 | 2 |
| ∠BOC = 90° - | 1 | ∠A |
| 2 |

