Algebra


  1. The value of the expression x4 – 17x3 + 17x2 – 17x + 17 at x = 16 is









  1. View Hint View Answer Discuss in Forum

    x4 – 17x3 + 17x2 – 17x + 17
    = x4 – 16x3 + 16x2 – 16x – x3 + x2 – x + 17
    When x = 16,
    Expression = 164 – 164 + 163 – 162 – 163 + 162 – 16 + 17 = 1

    Correct Option: B

    x4 – 17x3 + 17x2 – 17x + 17
    = x4 – 16x3 + 16x2 – 16x – x3 + x2 – x + 17
    When x = 16,
    Expression = 164 – 164 + 163 – 162 – 163 + 162 – 16 + 17 = 1


  1. If a, b, c are real and a2 + b2 + c2 = 2 (a – b – c) – 3, then the value of 2a – 3b + 4c is









  1. View Hint View Answer Discuss in Forum

    a2 + b2 + c2 = 2a – 2b – 2c – 3
    ⇒  a2 – 2a + b2 + 2b + c2 + 2c + 1 + 1 + 1 = 0
    ⇒  (a2 – 2a + 1) + (b2 + 2b + 1) + (c2 + 2c + 1) = 0
    ⇒  (a – 1)2 + (b + 1)2 +(c + 1)2 = 0
    ⇒  a – 1 = 0 ⇒ a = 1
    ⇒  b + 1 = 0 ⇒ b = –1
    and c + 1 = 0 ⇒ c = –1
    ∴  2a – 3b + 4c = 2 + 3 – 4 = 1

    Correct Option: C

    a2 + b2 + c2 = 2a – 2b – 2c – 3
    ⇒  a2 – 2a + b2 + 2b + c2 + 2c + 1 + 1 + 1 = 0
    ⇒  (a2 – 2a + 1) + (b2 + 2b + 1) + (c2 + 2c + 1) = 0
    ⇒  (a – 1)2 + (b + 1)2 +(c + 1)2 = 0
    ⇒  a – 1 = 0 ⇒ a = 1
    ⇒  b + 1 = 0 ⇒ b = –1
    and c + 1 = 0 ⇒ c = –1
    ∴  2a – 3b + 4c = 2 + 3 – 4 = 1



  1. The value of  
    4 + 3√3
      is
    7 + 4√3









  1. View Hint View Answer Discuss in Forum

    Expression =
    4 + 3√3
    7 + 4√3

    Rationalising the denominator,
    =
    (4 + 3√3)(7 − 4√3)
    (7 + 4√3)(7 − 4√3)

    =
    28 − 16√3 + 21 √3 − 12 × 3
    49 − 48

    = 28 + 5√3 – 36 = 5√3 – 8

    Correct Option: A

    Expression =
    4 + 3√3
    7 + 4√3

    Rationalising the denominator,
    =
    (4 + 3√3)(7 − 4√3)
    (7 + 4√3)(7 − 4√3)

    =
    28 − 16√3 + 21 √3 − 12 × 3
    49 − 48

    = 28 + 5√3 – 36 = 5√3 – 8


  1. If for non-zero, x, x2 – 4x – 1 = 0, the value of x2 +
    1
      is
    x2









  1. View Hint View Answer Discuss in Forum

    x2 – 4x – 1 = 0
    ⇒  x2 –1 = 4x
    Dividing by x

    x −
    1
    = 4
    x

    On squaring both sides,
    x −
    1
    2 = 16
    x

    ⇒  x2 +
    1
    – 2 = 16
    x2

    ⇒  x2 +
    1
    = 16 + 2 = 18
    x2

    Second Method :
    Using Rule 5,
    Here, x2 – 4x – 1 = 0
    ⇒  x2 – 1 = 4 x
    ⇒  x2
    1
    = 4
    x

    We know that
    x2 +
    1
    = x −
    1
    2 + 2
    x2x

    = 42 + 2 = 18

    Correct Option: D

    x2 – 4x – 1 = 0
    ⇒  x2 –1 = 4x
    Dividing by x

    x −
    1
    = 4
    x

    On squaring both sides,
    x −
    1
    2 = 16
    x

    ⇒  x2 +
    1
    – 2 = 16
    x2

    ⇒  x2 +
    1
    = 16 + 2 = 18
    x2

    Second Method :
    Using Rule 5,
    Here, x2 – 4x – 1 = 0
    ⇒  x2 – 1 = 4 x
    ⇒  x2
    1
    = 4
    x

    We know that
    x2 +
    1
    = x −
    1
    2 + 2
    x2x

    = 42 + 2 = 18



  1. If x = z = 225 and y = 226 then the value of x3 + y3 + z3 - 3xyz is :









  1. View Hint View Answer Discuss in Forum

    Using Rule 22,
    x = z = 225, y = 226
    ∴ x + y + z = 225 + 226 + 225 = 676

    ∴ x3 + y3 + z3 – 3 xyz =
    1
    (x + y + z) [ (x - y)2 + (y - z)2 + (z - x)2 ]
    2

    ⇒ x3 + y3 + z3 – 3 xyz =
    1
    × 676 × [ (225 – 226)2 + (226 – 225)2 + (225 – 225)2 ]
    2

    ⇒ x3 + y3 + z3 – 3 xyz =
    1
    × 676 × (1 + 1) = 676
    2

    Correct Option: B

    Using Rule 22,
    x = z = 225, y = 226
    ∴ x + y + z = 225 + 226 + 225 = 676

    ∴ x3 + y3 + z3 – 3 xyz =
    1
    (x + y + z) [ (x - y)2 + (y - z)2 + (z - x)2 ]
    2

    ⇒ x3 + y3 + z3 – 3 xyz =
    1
    × 676 × [ (225 – 226)2 + (226 – 225)2 + (225 – 225)2 ]
    2

    ⇒ x3 + y3 + z3 – 3 xyz =
    1
    × 676 × (1 + 1) = 676
    2