-
If x + 1 = √3 ,then the value of x18 + x12 + x6 + 1 is x
-
- 0
- 1
- 2
- 3
- 0
Correct Option: A
Using Rule 8,
| x + | = √3 | |
| x |
Cubing both sides,
| ∴ x3 + | + 3 | ![]() | x + | ![]() | = ( √3 )3 | ||
| x3 | x |
| ⇒ x3 + | + 3√3 = 3√3 | |
| x3 |
| ⇒ x3 + | = 0 | |
| x3 |
Now , x18 + x12 + x6 + 1 = x12( x6 + 1 ) + 1( x6 + 1 )
= ( x12 + 1 )( x6 + 1 )
| = ( x12 + 1 ).x3 | ![]() | x3 + | ![]() | = 0 | |
| x3 |

