-
If 
x + 1 
2 = 3 , then the value of ( x72 + x66 + x54 + x36 + x24 + x6 + 1 ) is x
-
- 1
- 2
- 3
- 4
Correct Option: A
Using Rule 8,
![]() | x + | ![]() | 2 | = 3 | ||
| x |
| ⇒ x + | = √3 | ||
| x |
On cubing both sides,
| ⇒ | ![]() | x + | ![]() | 3 | = 3√3 | |
| x |
| ∴ x3 + | + 3 | ![]() | x + | ![]() | = 3√3 | ||
| x3 | x |
| ⇒ x3 + | + 3√3 = 3√3 | |
| x3 |
| ⇒ x3 + | = 0 ⇒ x6 + 1 = 0 | |
| x3 |
Now , x72 + x66 + x54 + x36 + x24 + x6 + 1 = ( x6 )12 + ( x6 )11 + ( x6 )9 + ( x6 )6 + ( x6 )4 + ( x6 ) + 1
= 1 – 1 – 1 + 1 + 1 + 0 = 1