-
If x + 1 = 0 , then the value of x5 + 1 is x x5
-
- 2
- – 1
- 1
- 0
- 2
Correct Option: D
Using Rule 1 and 8,
| x + | = 0 | |
| x |
On squaring both sides,
| ⇒ | ![]() | x + | ![]() | 2 | = 0 | |
| x |
| ⇒ x2 + | + 2 = 0 | |
| x2 |
| ⇒ x2 + | = – 2 ..... (i)(not admissible) | |
| x2 |
| On cubing , x + | = 0 | |
| x |
| ⇒ x3 + | + 3 × 0 = 0 | |
| x3 |
| ⇒ x3 + | = 0 | |
| x3 |
| ∴ | ![]() | x2 + | ![]() | ![]() | x3 + | ![]() | = 2 × 2 = 4 | ||
| x2 | x3 |
| ⇒ x5 + | + x + | = 0 | ||
| x5 | x |
| ⇒ x5 + | = 0 | |
| x5 |

