-
If x4 + 1 = 119 , then the values of x3 + 1 are x4 x3
-
- ± 10√13
- ± √13
- ± 16√13
- ± 13√13
- ± 10√13
Correct Option: A
| x4 + | = 119 | |
| x4 |
| ⇒ | ![]() | x2 + | ![]() | 2 | - 2 = 119 | |
| x2 |
| ⇒ | ![]() | x2 + | ![]() | 2 | = 119 + 2 = 121 | |
| x2 |
| ⇒ | ![]() | x2 + | ![]() | 2 | = (11)2 | |
| x2 |
| ⇒ x2 + | = 11 | |
| x2 |
| Again, | ![]() | x + | ![]() | 2 | - 2 = 11 | |
| x |
| ⇒ | ![]() | x + | ![]() | 2 | = 11 + 2 = 13 | |
| x |
| ⇒ x + | = ± √13 | |
| x |
On cubing both sides,
| ⇒ | ![]() | x + | ![]() | 3 | = ( ± √13 )3 | |
| x |
| ⇒ x3 + | + 3 . x . | ![]() | x + | ![]() | = ± √13 | |||
| x3 | x | x |
| ⇒ x3 + | + 3 × ( ± √13 ) = ± √13 | |
| x3 |
| ⇒ x3 - | = ± (13√13 - 3√13) = ± 10√13 | |
| x3 |

