-
Given that x¨ + 3x = 0 , and x(0) = 1, ẋ(0) what is x(1)?
-
- –0.99
- –0.16
- 0.16
- 0.99
- –0.99
Correct Option: B
x¨ + 3x = 0
⇒ (D2 + 3)x = 0
P.I. = | (0) = 0 | |||
D2 + 3 |
Now C.F. is given by,
C1em1t + C2em2t
∴ m2 + 3 = 0
⇒ m = ± i √3
Hence the solution is C.F. + P.I.
i.e. C1ei √3t + C2e-i √3t
But x(0) = 1
⇒ C1 + C2 = 1
and x(0) = 0, x = i √3 C1 ei √3t - i √3 C2 e-i √3t
⇒ x(0) = 0
⇒ C1 = C2 = | ||
2 |
∴ x = | [ ei √3t + e-i √3t ] | |
2 |
⇒ x(1) = | [ ei √3 + e(1 / i √3) ] | |
2 |
cos √3 = −0.16