-
An analytic function of a complex variable z = x + iy is expressed as f(z) = u(x, y) + i v(x, y) where i = √-1. If u = xy, the expression for v should be
-
-
(x + y)2 + k 2
-
x2 - y2 + k 2
-
y2 - x2 + k 2
-
(x - y)2 + k 2
-
Correct Option: C
Given u = x,y
For analytic function
= | |||
∂x | ∂y |
and | = - | ||
∂y | ∂x |
By Milne Thomson method
Let w = u + zv
∴ | = | + i | |||
dz | ∂x | ∂x |
= | - i | ||
∂x | ∂y |
or | = y - ix | |
dz |
Replacing x by z and y by 0, we get
= 0 - iz | ||
dz |
where , z = x + iy
∴ dw = - iz dz
Integrating , w = -i | + C | |
2 |
where C is a constant ,
∴ V = Im | -i | + C | |||
2 |
= Im | -i | + C | |||
2 |
or V = | ||
2 |