-
The set of equations
x + y + z = 1
a – ay + 3z = 5
5x – 3y + az = 6
has infinite solution, if a =
-
- – 4
- 3
- 4
- – 3
Correct Option: C
Given set of equations are,
x + y + z = 1, a – ay + 32 = 5 and 5x – 3y + az = 6
Now ρ(A) = ρ(AB) < no. of variables
| A| = 0
1 | 1 | 1 | = 0 | ||||||
a | -a | 3 | |||||||
5 | -3 | a |
(– a² + 9) – (a² – 15) + (– 3a + 5a) = 0
9 – a² + 15 – a² + 2a = 0
2a² – 2a – 24 = 0
a² – a – 12 = 0
a² – 4a + 3a – 12 = 0
(a = 4, – 3)
ρ(AB) < (No. of variable)
1 | 1 | 1 | = 0 | ||||||
-a | 3 | 5 | |||||||
-3 | a | 6 |
1(18 – 5a) – 1(– 6a + 15) + 1(– a² + 9) = 0
18 – 5a – 15 + 6a + 9 – a² = 0
a² – a – 12 = 0
a = 3, 4 or a = 4
1 | 1 | 1 | = 0 | ||||||
a | -a | 5 | |||||||
5 | -3 | 6 |
(– 6a + 15) – (6a – 25) + (– 3a + 5a) = 0
– 6a + 15 – 6a + 25 + 2a = 0
10a = 40
a = 4
if a = 4
| AB| = 0
1 | 1 | 1 | = 0 | ||||||
a | 3 | 5 | |||||||
5 | a | 6 |
(18 – 5a) – (6a – 25) + (a² – 15) = 0
a² – 11a + 28 = 0
a = 7, 4 or a = 4