-
A ball of mass 3 kg moving with a velocity of 4 m/s undergoes a perfectly-elastic directcentral impact with a stationary ball of mass m. After the impact is over, the kinetic energy of the 3 kg ball is 6 J. The possible value(s) of m is/are
-
- 1 kg, 6 kg
- 1 kg, 9 kg
- 6 kg only
- 1 kg only
Correct Option: B
Conservation of linear momentum,
m1u1 + m2u2 = m1v1 + m2v2
⇒ u2 = 0
3 × 4 = 3 × v1 + mv2 ...(i)
∵ Coefficient of restitution, e = 1 for perfectly elastic collision,
v2 – v1 = (u1 – u2)
⇒ v2 – v1 = u1 = 4
⇒ v2 – v1 = 4 ...(ii)
Conservation of energy,
m1u²1 + | m2u²2 = | m1v²1 + | m2v²2 | ||||
2 | 2 | 2 | 2 |
⇒ | × 3 × (4)² + 0 = 6 + | m2v²2 | ||
2 | 2 |
⇒ (24 - 6)2 = m2v²2
⇒ mv²2 = 36 ...(iii)
∵ v1 = v2 – 4
Putting in equation (i)
⇒ 12 = 3v2 – 12 + mv2
⇒ v2 (3 + m) = 24 ...(iv)
Putting in equation (iii),
&RArr; | ² | = 36 | |||
3 + m |
⇒ (3 + m)² = 16m
⇒ 9 + m² + 6m – 16m = 0
⇒ m² – 10m + 9 = 0
⇒ m² – 9m – m + 9 = 0
(m – 9)(m – 1) = 0
m = 1,9 kg