-
A motor-boat goes 2 km upstream in a stream flowing at 3 km per hr. and then returns
downstream to the starting point in 30 minutes. Find the speed of the motor-boat in still water.
-
- 9.5 kmph
- 8.5 kmph
- 9 kmph
- 8 kmph
Correct Option: C
Let the speed of the motorboat in still water be Z km per hr.
Downstream speed= (Z + 3) km per hr.
Upstream speed = (Z – 3) km per hr.
Total journey time
= 30 minutes = | hr. = | hour | ||
60 | 2 |
We can write,
+ | = | |||
Z − 3 | Z + 3 | 2 |
or, 2 | = | |||||
(Z − 3) + (Z − 3) | 2 |
or, | = | ||
Z2 − 9 | 4 |
or, Z2 – 9 = 8Z
or, Z2 – 8Z – 9 = 0
or, Z2 + Z – 9Z – 9 = 0
or, Z(Z + 1) – 9 (Z + 1) = 0
or, (Z + 1) (Z – 9) = 0
∴ Z = – 1 or 9.
Since speed can’t be negative
Therefore, the speed of the motor-boat in still water = 9 km per hr.