-
If x = √3 , then √1 + x + √1 − x is equal to 2 1 + √1 + x 1 − √1 − x
-
- 1
- 2 / √3
- 2 – √3
- 2
Correct Option: B
| Given x = | |
| 2 |
| Given expression = | + | ||
| 1 + √1 + x | 1 − √1 − x |
| = | × | + | × | ||||
| 1 + √1 + x | 1 − √1 + x | 1 − √1 − x | 1 + √1 − x |
| = | + | ||
| 1 − 1 − x | 1 − 1 + x |
| = | − | ||
| x | x |
| = | |
| x |

[∵ √4 − 2√3 = √3 + 1 − 2√3
= √(√3 − 1)2 = √3 − 1]
and
[√4 + 2√3 = √3 + 1 + 2√3
= √(√3 + 1)2 = √3 + 1]
| = | = | ||
| √3 | √3 |