-
If xy + yz + zx = 0, then 
1 + 1 + 1 
(x, y, z ≠ 0) is equal to: x2 − yz y2 − zx z2 − xy
-
- 3
- 1
- x + y + z
- 0
Correct Option: D
x2 − yz = x2 − + xy + zx = x (x + y + z)
[∵ xy + yz + zx = 0
⇒ yz = −xy −zx]
Similarly,
y2 − zx = y (x + y + z)
z2 − xy = x (x + y + z)
| ∴ Expression = | + | + | |||
| x(x + y + z) | y(x + y + z) | z(x + y + z) |
| = | = 0 | |
| xyz(x + y + z) |