-
Let x = √13 + √11 and y = 1 then the value of 3x2 – 5xy + 3y2 is √13 − √11 x
-
- 1717
- 1177
- 1771
- 1171
Correct Option: A
| x = | |
| √13 − √11 |
On rationalising the denominator,
| = | × | ||
| √13 − √11 | √13 + √11 |
| = | |
| (√13)2 − (√11)2 |
| = | |
| 13 − 11 |
| = | = 12 + √143 | |
| 2 |
| ∴ y = | = | ||
| x | 12 + √143 |
| = | × | ||
| 12 + √143 | 12 − √143 |
| = | = 12 − √143 | |
| 144 − 143 |
∴ x – y = 12 + √143 – 12 + √143 = 2√143
and
xy = (12 + √143)(12 – √143)
= 144 – 143 = 1
∴ 3x2 – 5xy + 3y2 = 3x2 – 6xy + 3y2 + xy
= 3 (x – y)2 + xy
= 3 (2√143)2 + 1
= 3 × 4 × 143 + 1 = 1716 + 1
= 1717