-
In ∆ABC, D and E are two points on the sides AB and AC respectively so that DE||BC and
AD = 2 BD 3 Then the area of trapezium DECB is equal to the area of ∆ABC
-
- 5/9
- 21/25
-
1 4 5 -
5 1 4
- 5/9
Correct Option: B

DE || BC
∴ ∠ADE = ∠ABC
∠AED = ∠ACB
∴ ∆ADE ~ ∆ABC
| ∴ | = | ||
| BD | 3 |
| ⇒ | = | ||
| AD | 2 |
| = | + 1 = | + 1 | ||
| AD | 2 |
| ⇒ | |
| AD |
| ⇒ | ⇒ | = | |||
| 2 | AD | 2 |
| ∴ | = | = | ![]() | ![]() | ² | = | ||||
| Area of ∆ABC | AB² | 5 | 25 |
| ⇒ 1 - | = 1 - | ||
| Area of ∆ABC | 25 |
| ⇒ | = | ||
| Area of ∆ABC | 25 |
| ∴ | = | ||
| Area of ∆ABC | 25 |

