-
The solution of the equations (p/x) + (q/y) = m and (q/x) + (p/y) = n is
-
- x = (q2 - p2) / (mp - nq),
y = (p2 - q2) / (np - mq) - x = (p2 - q2/) / (mp - nq),
y = (q2 - q2) / (np - mq) - x = (p2 - q2/) / (mp - nq),
y = (p2 - q2) / (np - mq) - x = (q2 - p2) / (mp - nq),
y = (q2 - p2) / (np - mq)
- x = (q2 - p2) / (mp - nq),
Correct Option: C
(p/x) + (q/y) = m ..(i)
(q/x) + (p/y) = n ...(ii)
On multiply Eq (i) by q and Eq. (ii) by p and subtracting, we get
(pq/x) + (q2)/y = mq
(pq/x) + (p2)/y = np
-----------------------------------------
(q2/y) - (p2/y) = mq - np
∴ (q2 - p2) = y(mq - np)
∴ y = (q2 - p2)/mp - np = (p2 - q2)/np - mq
Again, on multiplying Eq. (i) by p and Eq. (ii) by q and subtracting, we get
(p2/x) + (pq/y) = mp
(q2/x) + (pq/y) = nq
-----------------------------------------
(p2/x) - (q2/x) = mp - nq
⇒ (p2 - q2) = x (mp - nq)
⇒ x = (p2 - q2)/(mp - nq)
∴ x = (p2 - q2)/(mp - nq)
and y = (p2 - q2) / (np - mq)