Home » Aptitude » Quadratic Equation » Question
  1. Determine k such that the quadratic equation x2 - 2( 1 + 3k ) x + 7 ( 3 + 2k ) = 0 has equal roots.
    1. 2,
      - 10
      9
    2. 2,
      10
      9
    3. - 2,
      10
      9
    4. - 2,
      -10
      9
Correct Option: A

According to question ,
On Comparing x2 - 2( 1 + 3k )x + 7 ( 3 + 2k ) = 0 with ax2 + bx + c = 0, we get
a = 1, b = - 2 ( 1 + 3k ), c = 7( 3 + 2k )
For equal roots D = b2 - 4ac = 0
∴ 4( 1 + 3k )2 - 4 x 1 x 7( 3 + 2k ) = 0
⇒ 4( 1 + 9k2 + 6k ) - 84 - 56k = 0
⇒ 4 + 36k2 + 24k - 56k - 84 = 0
⇒ 36k2 - 32k - 80 = 0
⇒ 9k2 - 8k - 20 = 0
By shridharachary method ,
Here , A = 9 , B = -8 , C = -20

k =
-B ± √B2 - 4AC
2A
k =
8 ± √64 - 4(9) ( - 20 )
2 x 9
k =
8 ± √784
=
8 ± 28
18
18
Taking +ve and -ve sign respectively , we get
k =
36
,
- 20
= 2,
- 10
18
18
9



Your comments will be displayed only after manual approval.