Home » Aptitude » Plane Geometry » Question
  1. In the given figure, In a Δ ABC , ∠B = ∠ C. If AM is the bisector of ∠ BAC and AN ⊥ BC, then ∠ MAN is equal to :


    1. 1(∠B + ∠C)
      2
    2. 1(∠C- ∠B )
      2
    3. ∠B + ∠C
    4. 1(∠B - ∠C)
      2
    5. None of these
Correct Option: D

In a ΔABC, ( Given ) ∠B = ∠C
Since AM is the bisector of ∠A,

∴ ∠MAB =1∠A .............. ( 1 )
2

In right-angled ΔANB, we have: ∠B + ∠NAB = 90° ⇒ ∠NAB = 90° − ∠B ….......... (2)
∴ ∠MAN = ∠MAB - ∠NAB
⇒ ∠MAN = 1∠A - (90° - ∠B)
2
⇒ ∠MAN = 1∠A - 90° + ∠B
2
⇒ ∠MAN =1∠A -1(∠A + ∠B + ∠C) + ∠B
22

we know that 1(∠A + ∠B + ∠C) = 90°
2
⇒ ∠MAN =1∠B -1(∠B + ∠C)
22
⇒ ∠MAN = 1(∠B - ∠C)
2



Your comments will be displayed only after manual approval.