Home » Aptitude » Simplification » Question
  1. [ (m - n)3 + (n - r)3 + (r - m)3 ] / 6[(m - n) (n - r) (r - m)] = ?
    1. 1/2
    2. 1/3
    3. 1/5
    4. 1/6
Correct Option: A

Let, (m - n) = a,
(n -r) = b
(r - m) = c,
Now a + b + c = (m - n) + (n -r) + (r - m)
⇒ a + b + c = m - n + n - r + r - m
⇒ a + b + c = 0............................. (i)
As we know the Algebra formula,
a3 + b3 + c3 ? 3abc = (a+b+c) X 1/2[(a?b)2+(b?c)2+(a?c)2]
Put the value of a + b + c from equation (i).
⇒ a3 + b3 + c3 ? 3abc = 0 X 1/2[(a?b)2+(b?c)2+(a?c)2]
⇒ a3 + b3 + c3 ? 3abc = 0
∴ a3 + b3 + c3 = 3abc
∴ Given expression in question is
[ (m - n)3 + (n - r)3 + (r - m)3 ]/ 6(m - n) (n - r) (r - m)
= ( a3 + b3 + c3 ) / 6abc
= 3abc/6abc
= 1/2



Your comments will be displayed only after manual approval.